Холодильные машины используются для охлаждения и поддержания на постоянном уровне низких температур.  Эффективность их работы оценивается в зависимости от вырабатываемой холодопроизводительности, измеряемой в ваттах или киловаттах. Рабочим веществом паровых холодильных машин является хладагент.

    По виду затрачиваемой энергии все холодильные машины можно подразделить на 4 типа: пароэжекторные, абсорбционные, парокомпрессорные и термоэлектрические.  Принцип действия аппаратов первых трех типов основан на том что рабочее вещество (хладагент) совершает холодильный цикл в процессе которого тепло от источника низкой температуры переносится к имеющей более высокую температуру окружающей среде.  В паровых машинах хладагенты во время цикла кипят при низких температурах, периодически меняя свое агрегатное состояние, переходя из жидкости в пар и обратно. В термоэлектрических же установках перенос тепла происходит под воздействием потока электронов на атомы.

    В зависимости от типа холодильной машины в каждой из них применяется в свой хладагент: в абсорбционных - водные растворы аммиака и бромистого лития, в пароэжекторных - водяной пар, в парокомпрессионных - хладоны.

 

  1. Пароэжекторная холодильная машина

paroez.jpg

    В этих машинах, состоящих из эжектора, испарителя, конденсатора, насоса и теплорегулирующего вентиля в качестве источника энергии используется водяной пар. Поскольку хладагентом является вода. Температура в холодильном объёме не может быть ниже 0°C.

    Принцип действия холодильной машины состоит в эжекции пара из испарителя. Под эжекцией подразумевается процесс смешения двух сред – пара и воды, при котором одна из них, находясь под давлением, воздействует на другую и, увлекая за собой, выталкивает ее в необходимом направлении. В пароэжекторной установке пар поступает в сопло эжектора, где он расширяется, в результате чего в испарителе создаётся пониженное давление. Здесь же за счёт частичного испарения происходит охлаждение подаваемой воды, а пар, отсосанный из испарителя, поступает в конденсатор, где переходит в жидкое состояние, отдавая тепло охлаждающей среде.

    Основные преимущества данного типа машин состоят в высокой надёжности, отсутствии движущихся узлов (упрощаются обслуживание и ремонт) и токсичных рабочих веществ.

    Пароэжекторные установки нашил применение на некоторых промышленных производствах, но в категории оборудования для предприятий торговли и питания встречаются довольно редко.

 

  1. Абсорбционная холодильная машина

 absorb.png

    Данные машины состоят из конденсатора, испарителя, дроссельного вентиля, абсорбера, насоса, редукционного клапана и парогенератора (кипятильника), вырабатывающего тепло, расходуемое на изменение агрегатного состояния хладагента, в роли которого чаще всего выступает аммиак. Абсорбционные насосные установки, чья холодопроизводительность может доходить до 100 киловатт, выгодно использовать там, где высока плата за электричество, но зато в избытке имеются дешевая тепловая энергия и вода.

    В процессе работы абсорбционной машины в испарителе происходит испарение хладагента за счёт теплоты, отнимаемой от охлаждаемой тела. Образующийся при этом пар из испарителя попадает в абсорбер, где взаимодействует с абсорбирующей жидкостью (водой), поглощающей находящийся в паровой фазе хладагент. Далее полученная концентрированная смесь поступает в насос, где её давление повышается, а затем перекачивается в кипятильник, который подводит к ней тепло. Большая часть хладагента, представляющего собой перегретый пар высокого давления, проходит через конденсатор. Оставшийся абсорбент охлаждается и возвращается в абсорбер через редукционный клапан для повторения холодильного цикла.

    Достоинства абсорбционных машин:

  • Бесшумность работы из-за отсутствия компрессора
  • Более долгий срок службы по сравнению с компрессионными установками

    Недостатки абсорбционных машин:

  • Высокое энергопотребление
  • Малая холодопроизводительность
  1. Парокомпрессорная холодильная машина

            Сегодня абсорбционные, а тем более пароэжекторные установки довольно редко можно найти на кухнях ресторанов или в торговых залах магазинов. Гораздо более широкое применение нашли парокомпрессионные холодильные машины, в которых по замкнутой траектории циркулирует ограниченное количество хладагента, переходящего из одного агрегатного состояния в другое при периодически меняющихся значениях температуры и давления.

            Основными конструктивными элементами таких машин являются компрессор, испаритель, конденсатор, ресивер, фильтр-осушитель и терморегулирующий вентиль, соединённые трубопроводами и представляющие собой замкнутую герметичную систему. Кроме этих основных узлов холодильная машина, приводимая в действие электродвигателем, оснащена приборами автоматики и пускозащитной электроаппаратурой, способствующими повышению экономичности и надежности работы.

 

    Цикл работы

 

scheme.png

           

    В компрессионных холодильных системах охлаждение производится посредством поглощения тепла при кипении (испарении) при пониженном давлении и низкой температуре хладагента в специальном теплообменнике, называемом испарителем. Жидкий хладагент, поступая в раскалённый испаритель, моментально вскипает, при этом сильно охлаждая его стенки. Необходимая для кипения теплота отбирается от охлаждаемого тела, вследствие чего его температура понижается. Пары хладагента, образовавшиеся в результате его кипения, попадают из испарителя по специальному трубопроводу во всасывающую трубку компрессора. Откачивая из испарителя газообразный хладагент, компрессор нагнетает его под высоким давлением в специальный теплообменник – конденсатор. Повышенное давление на выходе работающего компрессора толкает газообразный хладагент в конденсатор, где изменяется его фазовое состояние – газ превращается в жидкость. Процесс конденсации паров сопровождается передачей большого количества тепла потоку воздуха или жидкости. При сжатии газ сильно нагревается, но конструкция конденсатора позволяет эффективно рассеивать это тепло в окружающем воздухе. Газообразный хладагент, находящийся в конденсаторе под высоким давлением, охлаждаясь, постепенно переходит из газообразного состояния в жидкое. Данная жидкость, стекаясь по трубам конденсатора, скапливается в ресивере, откуда под давлением проходит через фильтр, где задерживаются механические примеси. Затем очищенный хладагент через узкое отверстие терморегулирующего вентиля распыляется и возвращается в испаритель для повторного испарения, продолжая свое непрерывное движение и замыкая цикл работы машины. При этом очень важно, чтобы в испарителе жидкость полностью перешла в парообразное состояние. Если в компрессор попадут даже мелкие капли жидкого хладагента, он может быть повреждён.

    Многоступенчатые и каскадные машины

    Для получения температур ниже -30°C используют многоступенчатые и каскадные холодильные машины, где сжатие паров производится последовательно в несколько этапов. Если для этих целей применять обычные одноступенчатые установки, нагрузка на компрессор неоправданно возрастает, что скажется на снижении эффективности работы. Поэтому при температурах кипения хладагента от -30 до -70°C предпочтение отдают двухступенчатым холодильным машинам. Когда же требуется достичь ещё более низких температурных значений (ниже -70°C), целесообразнее использовать трехступенчатые машины или же каскадные холодильные установки. Последние состоят из одной, двух или трёх одноступенчатых машин, включенных последовательно и работающих на различных хладагентах.